Structure and Electroanalytical Application of Nitrogen-doped Carbon Thin Film Electrode with Lower Nitrogen Concentration.
نویسندگان
چکیده
We studied a nitrogen-doped nanocarbon film electrode with a nitrogen concentration of lower than 10.9 at% formed by the unbalanced magnetron (UBM) sputtering method. The sp(3) content in the nitrogen-doped UBM sputtering nanocarbon film (N-UBM film) slightly increases with increasing nitrogen concentration. The nitrogen-containing graphite-like bonding decreases and pyridine-like bonding increases with increasing nitrogen concentration. The N-UBM film has a very smooth surface with an average roughness of 0.1 to 0.3 nm, which is almost independent of nitrogen concentration. The N-UBM film electrode shows a wider potential window (4.1 V) than a pure-UBM film electrode (3.9 V) due to its slight increase in the sp(3) content. The electrocatalytic activity increased with increasing nitrogen concentration, suggesting that the electroactivity is maximum when the nitrogen concentration is around 10.9 at%, which is confirmed by the peak separation of Fe(CN)6(4-). The hydrogen peroxide (H2O2) reduction potentials at the N-UBM film electrode shifted about 0.1 V, and the peak current of H2O2 increased about 4 times.
منابع مشابه
Evaluation of a nitrogen-incorporated tetrahedral amorphous carbon thin film for the detection of tryptophan and tyrosine using flow injection analysis with amperometric detection.
We report on the analytical performance of a tetrahedral amorphous carbon (ta-C:N) thin-film electrode in flow injection analysis with amperometric detection. Two model redox analytes were used to evaluate the electrode response because of their positive detection potentials and propensity (i.e., reaction products) to adsorb and foul sp2 carbon electrodes: tyrosine and tryptophan. ta-C:N electr...
متن کاملDetection of Lead and Copper with Nitrogen Doped Diamond-like Carbon Thin Films
Nitrogen doped diamond-like carbon (N-DLC) thin films were prepared on n-Si substrates using a filtered cathodic vacuum arc deposition method. Square wave anodic stripping voltammetry (SWASV) was used to trace Pb and Cu in a neutral KCl solution with pH 7. Stripping voltammograms of Pb and Cu were analyzed in terms of metal concentration, deposition time and deposition potential. The SWASV resu...
متن کاملA Theoretical Study of H2S and CO2 Interaction with the Single-Walled Nitrogen Doped Carbon Nanotubes
The physical adsorption of hydrogen sulfide and carbon dioxide gases on the zigzag (5,0) carbon nanotubes doped with nitrogen was investigated through the application of B3LYP/6-31G* at the level of theory on Gaussian 03 software. A variety of stable and high abundance structures of nitrogen doped carbon nanotubes were considered in order to study the interaction between the mentioned gases in ...
متن کاملEffect of Platinum and Ruthenium Incorporation on Voltammetric Behavior of Nitrogen Doped Diamond-Like Carbon Thin Films
Nitrogen doped diamond-like carbon thin films with or without platinum and ruthenium incorporation (N-DLC or PtRuN-DLC) were deposited on highly conductive p-Si substrates by DC magnetron sputtering to study the effect of Pt and Ru doping on the voltammetric performance of the N-DLC films. The potential windows of these film electrodes were measured in different electrolytic solutions, such as ...
متن کاملA Theoretical Study of H2S and CO2 Interaction with the Single-Walled Nitrogen Doped Carbon Nanotubes
The physical adsorption of hydrogen sulfide and carbon dioxide gases on the zigzag (5,0) carbon nanotubes doped with nitrogen was investigated through the application of B3LYP/6-31G* at the level of theory on Gaussian 03 software. A variety of stable and high abundance structures of nitrogen doped carbon nanotubes were considered in order to study the interaction between the mentioned gases in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical sciences : the international journal of the Japan Society for Analytical Chemistry
دوره 31 7 شماره
صفحات -
تاریخ انتشار 2015